The Realities of Climate and Energy

Steven E. Koonin, NYU/Hoover

Mid-Coast Forum on Foreign Relations

August 13, 2024

koonin@stanford.edu https://steven-koonin.medium.com/

Responses must strike a balance

Assessment reports define the science (vice "The Science")

UN IPCC Fifth Assessment Report (AR5, 2014)

US Climate Science Special Report (CSSR, 2017) US Fourth National Climate Assessment Vol II (2018) NCA5 in 2023

UN IPCC Sixth Assessment Report (AR6, 2021-22)

The reports say important (and surprising) things

Most people have not read these reports

Climate plays out over decades Annual Nile minima at the Roda Nilometer

Drains 10% of Africa (~1/3 CONUS)

Most climate observables show no trend IPCC AR6 WG1 Table 12.12

High confidence Me of decrease	dium confidence of decrease Low confidence in direction of change	lium confidence High confidence of increase of increase			
		Already Emerged in Historical Period	Snow and Ice	Snow, glacier and ice sheet	
Climatic Impact- driver Type Heat and Cold	Climatic Impact-driver Category			Permafrost	
	3 7			Lake, river and sea ice	11
	Mean air temperature	1		Heavy snowfall and ice storm	
	Extreme neat	2		Hail	
	Frost	4		Snow avalanche	
Wet and Dry	Mean precipitation			Relative sea level	
	River flood		Coastal	Coastal flood	
	Heavy precipitation and pluvial flood			Coastal erosion	
	Landslide			Mean ocean temperature	
	Aridity			Marine heatwave	
	Hydrological drought		Open Ocean	Ocean acidity	
	Agricultural and ecological drought			Ocean salinity	13
	Fire weather			Dissolved environ	14
Wind	Mean wind speed			Dissolved oxygen	14
	Severe wind storm			Air pollution weather	
	Tropical cyclone		Other	Atmospheric CO ₂ at surface	
	Sand and dust storm			Radiation at surface	

Hurricane "Activity" Accumulated Cyclone Energy (10⁴ knots²) 00 00 00 00 00 00 00 00 00 Global Northern Hemisphere 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 00 02 04 06 08 10 12 14 16 18 20 22 24 Note: Global data completeness much lower in 1970 Data: IBTrACS 4.0 (JTWC+NHC+Neumann) + operational ATCF b-deck

Very little is happening with Hurricanes

http://climatlas.com/tropical/

... there is **still low confidence that any reported long-term** (multidecadal to centennial) **increases in TC activity are robust** ... – CSSR, p 258

There is low confidence in most reported longterm (multidecadal to centennial) trends in TC frequency- or intensity-based metrics – IPCC AR6 11.7.1.2

Heat Wave Index (CONUS)

https://www.epa.gov/climate-indicators/climate-change-indicators-heat-waves

Past New England Heat Waves

New England Historical Society

A July 1911 heat wave killed thousands of New Englanders and sent many over the brink of madness. ... On July 4, temperatures hit 103 in Portland, 104 in Boston (a record that still stands), 105 in Vernon, Vt., and 106 in Nashua, N.H. and Bangor, Maine.

Historic Ipswich

On May 10, 1896 most of the Eastern US was over 90 degrees. New Bedford, Massachusetts was 96 degrees, which was 43 degrees warmer than the previous day's forecast high, but the worst was yet to come. A heat wave during **July and August, 1896** was at that time the worst weather-related tragedy in American history. By the time it ended in mid-August, 1500 deaths from the Midwest to New York to New England had been recorded

"Cold" is far deadlier than "heat"

Fraction of all-cause mortality attributable to moderate and extreme hot and cold temperature by country

https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(14)62114-0/fulltext

Recent unusual heat

Projections of future climates are not fit for purpose

- T. Palmer and B. Stevens, PNAS (2019)

Deficiencies of the latest generation of models

https://www.carbonbrief.org/cmip6-the-next-generation-of-climate-models-explained

Nijsse et al. (2020); 34 CMIP6 models

Sea Level Projections are extraordinary

Sea level data at Portland, ME

Humanity has prospered since 1900 despite 1.3C warming

Indicator	Change	Unit	"1900"	"Today"
<u>Global temperature</u>	1.3 warmer	degrees C	-0.5 (1905)	+0.8 (2022)
Population	5X larger	Billions	1.65 (1900)	8.0 (2022)
Life expectancy	130% longer	Years	32 (1900)	72.6 (2019)
Literacy fraction	4X larger	percent	21.4 (1900)	86.25 (2016)
GDP per capita	6.8X larger	\$2011	2,241 (1920)	15,212 (2018)
Extreme poverty	>7X smaller	Percent (<\$1/day)	70 (1900)	<10 (2015)
Weather death rate	50X smaller	per million	241 (1920)	5 (2008)

Sources:

Munich Re, World Bank, Aon

Updated from: Pielke 2019. Tracking progress on the economic costs of disasters under the indicators of the sustainable development goals. Environmental Hazards 18:1-6.

Note: 2022 is estimated based on 1H 2022 results reported by Aon, adjusted based on (a) historical relationship of loss estimates of Aon to Munich Re & (b) relationship of 1H to full year results. Green represents ~90% range of relationship of 1H to full year losses.

Agricultural impact of climate change

https://ourworldindata.org/grapher/index-of-cereal-production-yield-and-land-use

Estimated US Economic Impacts of Warming

Estimates of global warming's impact on the US GDP. The black line is the aggregate of the various peer-reviewed estimates shown.

https://www.whitehouse.gov/cea/writtenmaterials/2023/03/14/methodologies-and-considerations-forintegrating-the-physical-and-transition-risks-of-climate-changeinto-macroeconomic-forecasting-for-the-presidents-budget/

Response to a changing climate

Net Zero by 2050 "to avoid the worst effects of climate change"

UN EGR21, Figure ES.1

UN EGR21, Figure ES.6

The energy transition today

Energy is essential to well-being

Projected global energy consumption

Energy systems evolve over decades

Global energy consumption by source

https://ourworldindata.org/grapher/energy-consumption-by-source-and-country

The Electrical Grid's Troubled Triangle

Daily wind generation in the UK (2020-21)

https://reports.electricinsights.co.uk/q1-2021/when-the-wind-goes-gas-fills-in-the-gap/

Whither the energy transition?

Koonin's recommended course forward

- Cancel the "climate crisis", but acknowledge the task/challenge of reducing human influences
- Better observations and understanding of the climate
- Do not constrain the Developing World's energy supply
- A greater focus on adaptation and resilience (framework, costs)
- Develop and demonstrate emissions-lite technology
- Formulate "graceful" decarbonization pathways

Comments? Questions?

Steven.Koonin@nyu.edu

https://steven-koonin.medium.com/